
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    633 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

Communicating Two FPGA’s using UART 
Mercy Subaraman, Ravindra Asundi 

 

Abstract— Presently FPGAs are coming very strongly in the digital hardware systems as it provides the opportunity for reconfiguration  as well as 
good clock speed and design resources. The usage of FPGA systems in real time domain is also a very fruitful proposition as the FPGA devices are 
coming with processing cores for Real Time data processing. In a complex system scenario involving a large amount of processing tasks, there is a 
requirement of building the system using multiple FPGA devices. To make this possible we have to establish a real time data communication between 
the FPGA devices and to make it even better we have to apply data encryption techniques for making this communication secured. 
Universal Asynchronous Receiver and Transmitter (UART) protocol is a kind of serial communication protocol; mostly used for short-distance, low speed, 
low-cost data exchange between computer and peripherals.. In particular, it focuses on their effective data transmission rates and ratios. UART includes 
three kernel modules which are the baud rate generator, receiver and transmitter. Furthermore, this paper describes the communication between multi-
ple FPGA’s design using UART. 
Index Terms— Communication, FPGA, UART 

 

——————————      —————————— 

1 INTRODUCTION                                                                     

Reconfigurable System like FPGA platform has the poten-
tial to provide the performance benefits of ASICs and the 
flexibility of processors. The recent development of Plat-
form-FPGA or Field Programmable System-on-Chip ar-
chitectures, with immersed coarse-grain processors, em-
bedded memories and Implores, offers the potential for 
immense computing power as well as opportunities for 
rapid system prototyping. These platforms require high-
performance on-chip communication architectures for ef-
ficient and reliable inter-processor communication. How-
ever, as the number of embedded processors increases, 
communication bandwidth between embedded compo-
nents becomes a limiting factor to overall system perfor-
mance. On-FPGA communication is important to provide 
high bandwidth and reliable data transfer between pro-
cessing elements, and is therefore fundamental to overall 
FPGA-based system performance. In recently developed 
FPGA architectures, such as the so-called Platform-FPGA 
and Field- Programmable System-on-Chip, pre-fabricated 
coarse grained modules including microprocessors, DSP 
units and memory modules are immersed into the fine-
grain programmable fabric. These can provide significant 
improvements in speed, area as well as hardware configu-
ration time. 
           The Universal Asynchronous Receiver/Transmitter 
(UART) takes bytes of data and transmits the individual 
bits in a sequential fashion. At the destination, a second 
UART re-assembles the bits into complete bytes. Each 
UART contains a shift register, which is the fundamental 
method of conversion between serial and parallel forms. 
Serial transmission of digital information (bits) through a 
single wire or other medium is less costly than parallel 
transmission through multiple wires.Communication may 
be simplex (in one direction only, with no provision for 
the receiving device to send information back to the 

transmitting device), full duplex (both devices send and 
receive at the same time) or half duplex (devices take 
turns transmitting and receiving). 
 

 
 
          Fig 1: Character framing in UART 
 
The idle, no data state is high-voltage, or powered. This is 
a historic legacy from telegraphy, in which the line is held 
high to show that the line and transmitter are not 
damaged. Each character is sent as a logic low start bit, a 
configurable number of data bits (usually 8, but legacy 
systems can use 5, 6, 7 or 9), an optional parity bit, and 
one or more logic high stop bits as shown in Fig 1. 
The start bit signals the receiver that a new character is 
coming. The next five to eight bits, depending on the code 
set employed, represent the character. Following the data 
bits may be a parity bit. The next one or two bits are 
always in the mark (logic high, i.e., '1') condition and 
called the stop bit(s). They signal the receiver that the 
character is completed. Since the start bit is logic low (0) 
and the stop bit is logic high (1) there are always at least 
two guaranteed signal changes between characters. If the 
line is held in the logic low condition for longer than a 
character time, this is a break condition that can be 
detected by the UART [3]. 
 
The sender does not know when the receiver has “looked” 
at the value of the bit. The sender only knows when the 
clock says to begin transmitting the next bit of the word. 
When the entire data word has   been sent, the transmitter 
may add a Parity Bit that the transmitter generates. The 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    634 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

Parity Bit may be used by the receiver to perform simple 
error checking (both the sender and receiver must agree 
on whether a Parity Bit may use or not) and when the 
receiver has   received all of the bits in the data word then 
receiver looks for stop bit. 
 
If the Stop Bit does not appear, the UART considers the 
entire word be garbled and will report Framing Error.  
When the another word is ready for  transmission, the 
start bit for the new word can be  sent as soon as the stop 
bit for the previous word has  been sent. 
The UART takes bytes of data and transmits the 
individual bits in a sequential fashion. At the destination, 
a second UART re-assembles the bits into complete bytes. 
The UART allows the devices to communicate without the 
need to be synchronized. UART includes three kernel 
modules which are generator, receiver and transmitter. 
The paper focuses upon the effective communication 
between two FPGA’s using UART 

2.UART DESIGN 
UART provides the means to send information using a 

minimum number of wires. The data is sent bit serially, 
without a clock signal. The main function of a UART is the 
conversion of parallel-to-serial when transmitting and serial to-
parallel when receiving. The fact that a clock signal is not sent 
with the data complicates the design of a UART. The two 
systems (transmitter and receiver) contain separate and 
unsynchronized local clocks. A part of the function of UART 
[5] 
Communication between two FPGA’s using UART can be 
done effectively by sampling the incoming serial data at the 
right time to precisely capture the binary stream. This is ac-
complished by utilizing a fast clock to sample the binary 
stream multiple times for each data bit. Thus, when transmit-
ting, the UART receives the data in parallel from the applica-
tion, and sends it serially on the TxD pin, and when receiving, 
the UART receives the data serially on the RxD pin, and pro-
vides the parallel data to the application. The UART consists 
of two independent HDL modules. One module implements 
the transmitter, while the other module implements the re-
ceiver. The transmitter and receiver modules can be combined 
at the top level of the design, for any combination of transmit-
ter and receiver channels required. Data can be written to the 
transmitter and read out from the receiver, all through a single 
8 bit bidirectional CPU interface. Address mapping for the 
transmitter and receiver channels can easily built into the in-
terface at the top level of the design. Both modules share a 
common master clock called mclkx16. Within each module, 
mclkx16 is divided down to independent baud rate clocks.The 
UART module is divided into three sub-modules:  the trans-
mitter module, receiver module and baud rate generator, 
shown in Fig. 3. 

 

 
Figure 2: UART Block Diagram 

 

2.1BAUD RATE   GENERATOR   
The Baud Rate Generator is used to produce a sampling signal 
which is much higher than the baud rate to control the UART 
receiver and transmit. The baud rate generator is actually a 
frequency divider. The frequency factor is calculated accord-
ing 
to the given system clock frequency and requested baud rate. 
Assume that the system clock is 4MHZ; baud rate is 
9600bps.Therefore the frequency coefficient (M) of baud rate 
generator is: 
 
M=4*10^6/9600Hz=416.666 
Receiver clock (clk16) is 16 times faster than the internal clock 
Clk16 = 416.666/16=26. 
In order to obtain 50% duty cycle it needs to be further divid-
ed by 2. 
Then clk16=13 
 

 

 
Fig3 

 
 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    635 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

 
 

2.2 RECEIVER 
 
 
2.2.1 Receiver design 

The receiver can be designed as a Finite State machine. The 
main goal of the receiver is to detect the start-bit, then de-
serialize the following bit-stream, detect the stop-bit, and make 
the data available to the host. Three separate FSM’s should be 
the designed for start bit, data bits and stop bit. If the detected 
start bit is a real one, then it can sample the data every 16 times 
with respect to the clock 16x. 

 
2.2.2 Clocking Issue  

Our goal is to sample each bit at the midpoint .If we sample 
one-half a bit-period too early or too late, we will be sampling 
at the bit transition and have problems .In reality, we cannot 
sample close to the bit-transition point reliably. The primary 
reason for this is the finite (and typically slow) transmission 
rise and fall times. These times become even slower if overly 
capacitive cabling is used. A long bus incurs high attenuation, 
which reduces noise margin and makes it more important to 
sample when the bit level has settled. 
 
2.3TRANSMITTER 
The transmitter can be designed as a Finite State Machine as it 
increases the readability.Like the receiver counter-part, the 
design is minimalist and contains no error detecting logic. 
Transmission operation is simpler since it is under the control 
of the transmitting system. As soon as data is deposited in the 
shift register after completion of the previous character, the 
UART hardware generates a start bit, shifts the required num-
ber of data bits out to the line, generates and appends the pari-
ty bit (if used), and appends the stop bits. Since transmission 
of a single character may take a long time relative to CPU 
speeds, the UART will maintain a flag showing busy status so 
that the host system does not deposit a new character for 
transmission until the previous one has been completed; this 
may also be done with an interrupt. Since full-duplex opera-
tion requires characters to be sent and received at the same 
time, UARTs use two different shift registers for transmitted 
characters and received characters. 

 

 
 

 
 
 

         
     
 

    3. Proposed Design 
 
     

                 
Fig.4. Proposed System using UART 

 
This is the most challenging and interesting part of our 

paper, where two FPGA’s can communicate successfully. A 
real time data is taken from the Key board into board1 through 
RS232 port (DTE to DCE cable) and being sent to the board 2 
through RS232 (DTE to DTE cable) port. The plain text is being 
send to the HyperTerminal of next PC through RS232 (DCE to 
DTE cable) 

 
4. RESULTS 
A real time data is received from the key board using the 

HyperTerminal application of a host computer which is then 
being sent to board using RS232(9600bps,no parity bits) serial 
cable in the DCE port on the board,receieving the data. The 
plain text is then transferred to the PC HyperTerminal via the 
RS232 DCE port (9600 bps, no parity bit.) 

 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    636 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

 
 
 

 
5. CONCLUSION  
 
On-FPGA communication architectures play a crucial role in 
determining the performance and energy consumption 
Of platform-FPGAs containing embedded coarse-grain mod-
ules. The design of efficient and reliable communication archi-
tecture is a challenging multi objectiveOptimization problem 
.Here in this paper we have established reliable communica-
tion between multiple FPGA’s using UART implementation 
with a reconfigurable baudrate generator. Future work can be 
done by incorporating an RTOS and implementing an inter-
processes communication in the system 
 
 
 References 
[1] Terrence S. T. Mak , Pete Sedcole, Peter Y. K. Cheung,  On-

FPGA communication architectures and design factors. 
[2] B.Jeevan & M.Neeraja, Design And Simulation Of Uart 

Protocol Based On Verilog. Warangal. 
[3] http://en.wikipedia.org/wiki/Universal_asynchronous_rec

eiver/transmitter. 
[4] Gupta R.K., Zorian Y. (1997) IEEE Design & Test Of 

Computers, 14-25. 
[5]  Magandeep kaur, ruchi mittal, FPGA implementation & 

design of micro uart with different baud rates. Faridabad, 
India. 

[6]HazimKamalAnsari, Design of high Speed UART for program-
ming FPGA 

 

 

IJSER

http://www.ijser.org/

	1 Introduction
	2.UART DESIGN
	2.1BAUD RATE   GENERATOR
	2.2 RECEIVER




